Book Description
Throughout my teaching career I have always enjoyed teaching calculus and helping students to see the elegance and beauty of calculus. So when I was approached by my editor to write this series, I welcomed the opportunity. Upon reflecting, I see that I started this project from a strong vantage point. I have written an Applied Mathematics series, and over the years I have gotten a lot of feedback from many professors and students using the books in the series. The wealth of suggestions that I gained from them coupled with my experience in the classroom served me well when I embarked upon this project.
In writing the Calculus series, I have constantly borne in mind two primary objectives: first, to provide the instructor with a book that is easy to teach from and yet has all the content and rigor of a traditional calculus text, and second, to provide students with a book that motivates their interest and at the same time is easy for them to read.
In my experience, students coming to calculus for the first time respond best to an intuitive approach, and I try to use this approach by introducing abstract ideas with concrete, real-life examples that students can relate to, wherever appropriate. Often a simple real-life illustration can serve as motivation for a more complex mathematical concept or theorem. Also, I have tried to use a clear, precise, and concise writing style throughout the book and have taken special care to ensure that my intuitive approach does not compromise the mathematical rigor that is expected of an engineering calculus text.
In addition to the applications in mathematics, engineering, physics, and the other natural and social sciences, I have included many other examples and exercises drawn from diverse fields of current interest. The solutions to all the exercises in the book are provided in a separate manual. In keeping with the emphasis on conceptual understanding,
I have included concept questions at the beginning of each exercise set. In each end-of-chapter review section I have also included fill-in-the-blank questions for a review of the concepts. I have found these questions to be an effective learning tool to help students master the definitions and theorems in each chapter. Furthermore, I have included many questions that ask for the interpretation of graphical, numerical, and algebraic results in both the examples and the exercise sets.
Unique Approach to the Presentation of Limits
Finally, I have employed a unique approach to the introduction of the limit concept. Many calculus textbooks introduce this concept via the slope of a tangent line to a curve and then follow by relating the slope to the notion of the rate of change of one quantity with respect to another. In my text I do precisely the opposite: I introduce the limit concept by looking at the rate of change of the maglev (magnetic levitation train). This approach is more intuitive and captures the interest of the student from the very beginning—it shows immediately the relevance of calculus to the real world. I might add that this approach has worked very well for me not only in the classroom; it has also been received very well by the users of my applied calculus series. This intuitive approach (using the maglev as a vehicle) is carried into the introduction and explanation of some of the fundamental theorems in calculus, such as the Intermediate Value Theorem and the Mean Value Theorem. Consistently woven throughout the text, this idea permeates much of the text—from concepts in limits, to continuity, to integration, and even to inverse functions.
Do you like this book? Please share with your friends, let's read it !!